Kühlen und Klimatisieren mit Wärme

2., erweiterte und vollständig überarbeitete Auflage

Die Autoren:
Hans-Martin Henning
Thorsten Urbaneck
Alexander Morgenstern
Tomas Núñez †
Edo Wiemken
Egbert Thümmeler
Ulf Uhlig

BINE Informationsdienst ist ein Service von FIZ Karlsruhe GmbH und wird vom Bundesministerium für Wirtschaft und Energie (BMWi) gefördert.

Für weitere Fragen steht Ihnen zur Verfügung:
Dr. Franz Meyer (Redaktion)
BINE Informationsdienst, FIZ Karlsruhe GmbH, Büro Bonn
Kaiserstraße 185–197, 53113 Bonn
Tel. +49 228 923 79-0, E-Mail: bine@fiz-karlsruhe.de, www.bine.info
Inhaltsverzeichnis

Symbolverzeichnis .. 7
Vorwort .. 8

1 Warum klimatisieren – warum mit Wärme ... 9
1.1 Innere und äußere Wärmelasten .. 9
1.2 Kältebedarf in Deutschland .. 10
1.3 Verfahren zur Kältebereitstellung und Klimatisierung 11
1.4 Energetischer Vergleich von Kältemaschinen mit mechanischem und thermischem Antrieb ... 12
1.5 Wärmequellen für thermisch angetriebene Kältemaschinen 14
1.6 Klimatisieren mit Wärme entlastet das Stromnetz 19

2 Technologien zur thermisch angetriebenen Kälteerzeugung und Klimatisierung ... 21
2.1 Geschlossene Verfahren .. 24
2.1.1 Generelle Funktionsweise .. 24
2.1.2 Absorptionskältemaschinen .. 25
2.1.3 Adsorptionskältemaschinen ... 33
2.1.4 Aufbau und Funktion von Anlagen .. 37
2.1.5 Dampfstrahlkälte ... 41
2.1.6 Rückkühlung .. 48
2.2 Offene Verfahren ... 51
2.2.1 Generelle Funktionsweise .. 53
2.2.2 Verfahren mit Sorptionsrotoren ... 55
2.2.3 Verfahren mit flüssigen Sorptionsmitteln 61

3 Systeme zur Klimatisierung und Kälteversorgung 63
3.1 Anwendungen im kleinen bis mittleren Leistungsbereich 63
3.1.1 Systemaspekte und Systemkonfigurationen 63
3.1.2 Primärenergetische Betrachtung .. 70
3.1.3 Systemauslegung und Auslegungsbeispiel 76
3.2 Anwendungen im mittleren bis großen Leistungsbereich 83
3.2.1 Nah- und Fernkälte .. 83
3.2.2 Systemkonfigurationen ... 85
3.2.3 Effizienz, Kosten, Wirtschaftlichkeit ... 99

4 Ausgeführte Anlagen .. 103
4.1 Nutzung solarer Wärme ... 103
4.1.1 Weinlagerkühlung in Banyuls, Südfrankreich 107
4.1.2 Sorptionsgestützte Klimatisierung von Seminarräumen der IHK Südlicher Oberrhein, Freiburg ... 108
Symbolverzeichnis

Lateinische Buchstaben

<table>
<thead>
<tr>
<th>Zeichen</th>
<th>Bedeutung</th>
<th>Einheit</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Fläche</td>
<td>m²</td>
</tr>
<tr>
<td>c</td>
<td>spezifische Wärmekapazität</td>
<td>J/(kgK)</td>
</tr>
<tr>
<td>m</td>
<td>Masse</td>
<td>kg</td>
</tr>
<tr>
<td>ṁ</td>
<td>Massenstrom</td>
<td>kg/s</td>
</tr>
<tr>
<td>n</td>
<td>Anzahl</td>
<td>–</td>
</tr>
<tr>
<td>p</td>
<td>Druck</td>
<td>Pa</td>
</tr>
<tr>
<td>q̇</td>
<td>Wärmestromdichte</td>
<td>W/m²</td>
</tr>
<tr>
<td>Q</td>
<td>Wärme</td>
<td>J</td>
</tr>
<tr>
<td>Q̇</td>
<td>Wärmestrom</td>
<td>W</td>
</tr>
<tr>
<td>t</td>
<td>Zeit</td>
<td>s</td>
</tr>
<tr>
<td>T</td>
<td>Temperatur</td>
<td>°C</td>
</tr>
<tr>
<td>S</td>
<td>Entropie</td>
<td>J/K</td>
</tr>
<tr>
<td>u</td>
<td>spezifische innere Energie</td>
<td>J/kg</td>
</tr>
<tr>
<td>U</td>
<td>innere Energie</td>
<td>J</td>
</tr>
<tr>
<td>V</td>
<td>Volumen</td>
<td>m³</td>
</tr>
<tr>
<td>V̇</td>
<td>Volumenstrom</td>
<td>m³/s</td>
</tr>
</tbody>
</table>

Griechische Buchstaben

<table>
<thead>
<tr>
<th>Zeichen</th>
<th>Bedeutung</th>
<th>Einheit</th>
</tr>
</thead>
<tbody>
<tr>
<td>α</td>
<td>Wärmeübergangskoeffizient</td>
<td>W/(m²K)</td>
</tr>
<tr>
<td>Δ</td>
<td>Differenz</td>
<td>–</td>
</tr>
<tr>
<td>η</td>
<td>dynamische Viskosität</td>
<td>kg/(ms)</td>
</tr>
<tr>
<td>λ</td>
<td>Wärmeleitfähigkeit</td>
<td>W/(mK)</td>
</tr>
<tr>
<td>ν</td>
<td>kinematische Viskosität</td>
<td>m²/s</td>
</tr>
<tr>
<td>ρ</td>
<td>Dichte</td>
<td>kg/m³</td>
</tr>
</tbody>
</table>

Indizes und Abkürzungen

<table>
<thead>
<tr>
<th>Zeichen</th>
<th>Bedeutung</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>Außen</td>
</tr>
<tr>
<td>AbKM</td>
<td>Absorptionskältemaschine</td>
</tr>
<tr>
<td>AdKM</td>
<td>Adsorptionskältemaschine</td>
</tr>
<tr>
<td>aus</td>
<td>Austritt</td>
</tr>
<tr>
<td>BES</td>
<td>Be- und Entladesystem</td>
</tr>
<tr>
<td>BHKW</td>
<td>Blockheizkraftwerk</td>
</tr>
<tr>
<td>DSK</td>
<td>Dampfstrahlkältemaschine</td>
</tr>
<tr>
<td>eff</td>
<td>Effektiv</td>
</tr>
<tr>
<td>ein</td>
<td>Eintritt</td>
</tr>
<tr>
<td>HKW</td>
<td>Heizkraftwerk</td>
</tr>
<tr>
<td>KWK</td>
<td>Kraft-Wärme-Kopplung</td>
</tr>
<tr>
<td>KWKK</td>
<td>Kraft-Wärme-Kälte-Kopplung</td>
</tr>
<tr>
<td>m</td>
<td>Mittlere</td>
</tr>
<tr>
<td>max</td>
<td>Maximum, maximal</td>
</tr>
<tr>
<td>min</td>
<td>Minimum, minimal</td>
</tr>
<tr>
<td>Umg</td>
<td>Umgebung</td>
</tr>
<tr>
<td>Ver</td>
<td>Verlust</td>
</tr>
</tbody>
</table>
Vorwort

Bisher werden für die Gebäudeklimatisierung hauptsächlich elektrisch angetriebene Kompressionskältemaschinen eingesetzt. Wenn diese ohne Kältespeicher betrieben werden, belasten sie das Netz oftmals gerade zu Spitzenlastzeiten mit einem hohen Leistungsbedarf.

In den USA und Japan erreichen mit Gas befeuerte Absorptionskältemaschinen große Marktanteile. Diese nutzen im Sommer freie Kapazitäten des Gasnetzes und reduzieren so die Spitzenlasten des Stromnetzes. Mit dem hohen Temperaturniveau der Gasfeuerung sind Kälteleistungen bis zum 1,7-fachen der eingesetzten Wärmeleistung erreichbar.

In den letzten Jahren wächst das Interesse an wärmegetriebenen Kühl- und Entfeuchtungsverfahren, die Wärme auf niedrigem Temperaturniveau wie z.B. Fernwärme, Abwärme und insbesondere auch solare Wärme für die Klimatisierung zu nutzen. Das vorliegende BINE-Fachbuch soll einen umfassenden Überblick über die verschiedenen Verfahren geben, die Wärme als Antriebsenergie für die Kälteerzeugung zu nutzen.

FIZ Karlsruhe GmbH
BINE Informationsdienst
1 Warum klimatisieren – warum mit Wärme

1.1 Innere und äußere Wärmelasten

Die Klimatisierung1 von Räumen und Gebäuden ist eine wesentliche Aufgabe der Klimatechnik. Grundsätzlich bestehen Kühllasten aus zwei Anteilen: den sensiblen Kühllasten, die einen Einfluss auf die Raumtemperatur haben und die latenten Kühllasten, die die Raumluftefeuchte beeinflussen.

Die sensible Kühlast (Abb. 1) setzt sich aus so genannten äußeren und inneren Lasten zusammen. Äußere Lasten sind die solare Einstrahlung (insbesondere bei transparenten Bauteilen), die Wärmeleitung im Wandaufbau und das Eindringen der warmen Außenluft durch die Gebäudehülle ins Gebäude. Sie bilden im Wesentlichen die zyklischen Kältelasten im Tag-Nacht-Rhythmus.

An strahlungsreichen Tagen im Sommer steigt die Außentemperatur und demzufolge die Kühllast (Abb. 2). Abbildung 2 verdeutlicht weiterhin, dass am Wochenende (11.08. und 12.08.2007) geringere Lasten auftreten, da die Benutzung der klimatisierten Räume (z. B. Büro oder Einkaufsstätten) verringert ist.

1.2 Kältebedarf in Deutschland

Nach Franzke [1] werden in der Bundesrepublik Deutschland ca. 79 000 GWh/a für die technische Kälteerzeugung benötigt. Abbildung 3 zeigt die Verteilung auf die einzelnen Bereiche. Die Klimatisierung nimmt einen Anteil von ca. 26 % der gesamten Kältebereitstellung ein, d. h. ca. 21 000 GWh/a. Hier ergibt sich ein nennenswertes Potenzial zur Reduktion im Sinne einer umweltfreundlichen Energieversorgung.

Müller [2] stellt in einer neueren Analyse fest, dass ca. 15 % des Stromverbrauchs (90 000 GWh/a) die für technische Kältebereitstellung in Deutschland benötigt werden. Er weist das Gewerbe mit 50 000 GWh/a (30 000 000 t/a CO₂-Emissionen) und die Haushalte mit 25 000 GWh/a (15 000 000 t/a CO₂-Emissionen) aus.

Für einen steigenden Bedarf an Kühlenergie im Bereich der Gebäude sind folgende Tendenzen verantwortlich:

architektonische Gestaltung der Gebäudehülle mit hohen Anteilen transparenter Bauteile, Zunahme der äußeren Lasten,
- Anstieg der inneren Lasten durch technische Ausrüstung, z. B. Personal-Computer,
- zunehmende Komfortansprüche,
- längere Betriebszeiten (z. B. Ladenöffnungszeiten).

Abb. 3: Verteilung des Nutzkältebedarfs seitens der technischen Bereitstellung in der Bundesrepublik Deutschland

1.3 Verfahren zur Kältebereitstellung und Klimatisierung

Zur Deckung des Kältebedarfs sind Verfahren zur Kältebereitstellung notwendig. Im Bereich der Komfortklimatisierung sind neben Verfahren der Kälteerzeugung auch Verfahren möglich, die eine direkte Konditionierung der Zuluft ermöglichen und ohne Kaltwassererzeuger auskommen. Zunächst soll ein Überblick gegeben werden, um die vielfältigen Möglichkeiten aufzuzeigen:

- Einsatz von Maschinen oder offenen thermodynamischen Verfahren (Nutzung verschiedener physikalischer und chemischer Effekte, siehe unten),
 - Nacht, tageszeitlich,
 - Winter und Übergangszeiten, jahreszeitlich,
 - durch das Klima beladene natürliche Speichermassen (z. B. Eis der Polarkappen, Oberflächengewässer, Wasser aus unterirdischen Quellen)

- Kaltdumpf-Maschinen, mechanische Kompression mit folgenden Verdichtern (Kolben-, Schrauben-, Scroll-, Turboverdichter),
- Sorptionsprozesse (Absorption, Adsorption),
Warum klimatisieren – warum mit Wärme

- Dampfstrahl-Prozess,
- Verdunstungskühlung (z. B. mit offenen Kühltürmen),
- Sonderverfahren,
 - Kaltgas-Maschinen (z. B. Stirling-Prozess, Philips-Gaskältemaschine),
 - Apparate zur Verflüssigung von Gasen (z. B. Linde-Verfahren),
 - thermoelektrische Verfahren (z. B. Peltier-Effekt),
 - magnetokalorische Verfahren.

1.4 Energetischer Vergleich von Kältemaschinen mit mechanischem und thermischem Antrieb

Ein wesentlicher Unterschied zwischen Kompressions- und Sorptionskälteverfahren ist der Exergieanteil der Antriebsenergie. Bei der Kompressionskälte besitzt die zugeführte Arbeit 100 % Exergie. Im Gegensatz dazu ist der Exergieanteil der Antriebswärme im Wesentlichen eine Funktion der Temperatur (Abb. 4).

Für die Funktion einer Kältemaschine ist also die zugeführte Exergie entscheidend. Betrachtet man die energetischen Verhältnisse (Abb. 5), wird deutlich, dass bei thermischem Antrieb viel mehr Energie zugeführt werden muss. Auch die abzuführende Wärme ist deutlich größer als bei einem Prozess mit mechanischem Antrieb, was als Nachteil bewertet werden muss. Im Umkehrschluss sind hohe Antriebstemperaturen (hoher Exergieanteil) für thermische Kälteerzeugungsverfahren günstig.

Abb. 4: Anteil der Exergie von Wärme in Abhängigkeit vom Temperaturniveau bei einer Umgebungstemperatur von 20 °C.
Beide Verfahren arbeiten umso effizienter, je geringer der Exergiegehalt der Nutzkälte ist. Dies erreicht man über möglichst hohe Temperaturen auf der Kälteseite (z. B. Vorlauftemperatur des Kältenetzes) und über möglichst niedrige Temperaturen auf der Seite der Rückkühlung, also möglichst niedrige Temperaturen der abgeführten Wärme z. B. im Kühlkreis.

Energie und Exergie

Exergie ist derjenige Anteil der Energie, der Arbeit verrichten kann. Unter *Anergie* versteht man den komplementären Anteil. Elektroenergie kann nahezu vollständig in Bewegungsenergie umgesetzt werden, der Exergieanteil beträgt somit 100 %. Hingegen besteht die innere Energie eines heißen Körpers aus einem Teil Exergie und einem Teil Anergie. Im Folgenden soll nur die Exergie betrachtet werden. Für ein geschlossenes System kann die Exergie E wie folgt definiert werden (Gleichung 1):

$$E = (H - H_{Umg}) - T_{Umg}(S - S_{Umg})$$

Gleichung 1

$$H = U + pV$$

Gleichung 2

Dabei ist die Enthalpie H (entsprechend Gleichung 2) selbst über die innere Energie temperatur- und druckabhängig. Der Exergiegehalt definiert sich also im Bezug zu den Vergleichsgrößen der Umgebung.

Betrachtet man die Exergie eines Wärmestroms (Gleichung 3) besitzt nur die Temperatur einen Einfluss.

$$\dot{E}_Q = \frac{T - T_{Umg}}{T} \dot{Q}$$

Gleichung 3

Bei dieser Betrachtung wird der Zustand der Umgebung lediglich über die Umgebungs temperatur T_{Umg} mit einbezogen. Der Umgebungs-zustand wird bei der Analyse wegen der sehr großen Masse als unveränderbar angenommen.
1.5 Wärmequellen für thermisch angetriebene Kältemaschinen

- Wasserdampf-Turbinen,
- Turbinen für den Organic-Rankine-Cycle (ORC),
- Turbinen für den Kalina-Prozess,
- Stirlingmotoren,
- Dampfмотoren,
- Gasmotoren,
- Motoren für flüssige Brennstoffe,
- Standard-Gasturbinen,
- Mikroturbinen und
- Brennstoffzellen.

Für die solarthermische Wärmegewinnung sind die Strahlungsverhältnisse an der Erdoberfläche ausschlaggebend. Die Globalstrahlung liegt im Langzeitmittel für Deutschland zwischen 940 und 1 220 kWh pro Quadratmeter und Jahr (vgl. Abb. 7). Diese jährliche Globalstrahlung besteht zu ca. 50 % aus direkter und ca. 50 % aus diffuser Einstrahlung. Hierfür ist vor allem die Bewölkung verantwortlich. Je nach der Definition des Sommer- und Winterhalbjahres beträgt die sommerliche Einstrahlung 2/3 bis 4/5 der gesamten jährlichen Globalstrahlung (Abb. 7).

Bei wolkenlosem Himmel sind Leistungsdichten von bis rund 1000 W/m² an der Erdoberfläche möglich. Aufgrund der Sonnenposition bestehen jedoch starke Abhängigkeiten von Tages- und Jahreszeit.

Trotz des zeitlich schwankenden Energieangebotes ist die solarthermische Energiegewinnung zur Kühlung eine gute Alternative, da zunächst ein ausreichend hohes Energieangebot mit hohen Leistungsdichten vorhanden ist. Besonders förderlich wirkt sich weiterhin die

3 Hier werden ebenfalls Dampfturbinen eingesetzt. Das Arbeitsmittel ist aber nicht Wasser, sondern ein organischer Stoff oder Gemische aus organischen Stoffen.

Korrelation zwischen solarer Einstrahlung (eine wesentliche Ursache der Kühllast) und der Kältelast in Versorgungssystemen aus (Abb. 8). Die Spitzenlast ist in der Regel nur um wenige Stunden verzögert zur maximalen Einstrahlung. Mittels Kurzzeitspeicher kann die Lastverschiebung ausgeglichen werden.

Abb. 6: Prozessschritte bei der KWK

Abb. 7: Gemessene solare Einstrahlung in Absorberebene (35° Neigung, fast ideale Südausrichtung), Monatsbilanzen, Chemnitz, solarisPark

Abb. 8: Globalstrahlung in horizontaler Ebene und typischer Verlauf der Kälteleast, Messwerte, Fernkältesystem in Chemnitz
Blockheizkraftwerk als Wärmequelle

<table>
<thead>
<tr>
<th>Technologie</th>
<th>Dampfturbine</th>
<th>Verbrennungsmaschine</th>
<th>Mikroturbine</th>
<th>Stirling</th>
<th>Brennstoffzelle</th>
</tr>
</thead>
<tbody>
<tr>
<td>Brennstoffe</td>
<td>alle</td>
<td>Erdgas, Propan, Diesel, Biogas</td>
<td>Gas, Propan, flüssige Brennstoffe, Biogas</td>
<td>alle</td>
<td>Wasserstoff bzw. verschiedene Kohlenwasserstoffe in Verbindung mit Reformer</td>
</tr>
<tr>
<td>Leistungsbereich</td>
<td>50 kW–500 MW</td>
<td>5 kW–20 MW</td>
<td>3 kW–6 MW</td>
<td>15 kW–300 kW</td>
<td>1 kW–1,5 MW</td>
</tr>
<tr>
<td>Wirkungsgrad, elektrisch</td>
<td>7–20 %</td>
<td>35–45 %</td>
<td>25–43 %</td>
<td>15–30 %</td>
<td>10–40 %</td>
</tr>
<tr>
<td>Wirkungsgrad, gesamt</td>
<td>60–80 %</td>
<td>65–90 %</td>
<td>70–92 %</td>
<td>60–85 %</td>
<td>65–85 %</td>
</tr>
<tr>
<td>Teillastverhalten</td>
<td>gut bis mittel</td>
<td>gut</td>
<td>gut</td>
<td>mittel</td>
<td>gut</td>
</tr>
<tr>
<td>Standzeit, Jahre</td>
<td>25–35</td>
<td>20</td>
<td>20</td>
<td>10</td>
<td>10</td>
</tr>
</tbody>
</table>

Abb. 9: Übersicht über BHKW-Bauarten und ihre wesentlichen technischen Merkmale; es wurden nur Technologien berücksichtigt, bei denen auch Geräte im kleinen bis mittleren Leistungsbereich vorliegen.

Wärmequellen für thermisch angetriebene Kältemaschinen

Wärme aus solarthermischen Anlagen

Die wesentliche zusätzliche Komponente bei solar angetriebenen Kühlanlagen ist die Kollektoranlage, bestehend aus dem Kollektorfeld, der Verrohrung, der Pumpengruppe, der Regelung und der Wärmeübergabe an den Speicher bzw. den Heizverteiler. Deshalb soll zunächst ein kurzer Überblick über Solarkollektoren gegeben werden, ohne auf sämtliche Details der Solarthermie einzugehen; hierzu gibt es umfassende Literatur (siehe [7]).

Solarkollektoren

Solarluftkollektoren: Diese Kollektoren werden direkt von Luft durchströmt, sie gewährleisten damit ohne weitere Maßnahmen einen frostsicheren Betrieb. Sie können in Verfahren der solaren Klimatisierung eingesetzt werden, die mit niedrigen Antriebstemperaturen arbeiten, so etwa in der offenen sorptionsgestützten Klimatisierung. Der Verzicht auf eine ZwischenSpeicherung solarer Wärme ist bei dieser Technologie sinnvoll. Daher können die Kollektoren insbesondere dort eingesetzt werden, wo eine ausschließlich solarthermische Deckung der Antriebswärme des Klimatisierungsprozesses möglich ist.

Abb. 10: Zusammenhang zwischen dem elektrischen Wirkungsgrad und der elektrischen Nennleistung von marktverfügbaren erdgasbetriebenen BHKW mit entsprechender Ausgleichskurve
Warum klimatisieren – warum mit Wärme

Vakuumröhrenkollektoren: Hier existiert eine Vielzahl unterschiedlicher Modelle, die sich stark im konstruktiven Aufbau und im Prinzip der Wärmeabfuhr (direkt durchströmter oder heat-pipe-Prinzip) unterscheiden. Im Allgemeinen erlauben sie gute Kollektor­nutzungsgrade bei einstufigen Absorptions­kältemaschinen; sehr hoch­effiziente Typen sind unter Umständen auch noch in Kombination mit zweistufigen Kältemaschinen einsetzbar. Bei der Anwendung dieser Kollektoren muss in der Planung in besonderem Maße auf die Stillstandssicherheit des Kollektorfeldes geachtet werden.

Nachgeführte konzentrierende Kollektoren [8]: In sonnenreichen Gebieten (typischerweise ab ca. 1 800 kWh pro m² und Jahr) können einachsig nachgeführte Parabolrinnen­kollektoren

![Diagramm](https://example.com/diagramm.png)

Klimatisieren mit Wärme entlastet das Stromnetz

1.6 Klimatisieren mit Wärme entlastet das Stromnetz

In Deutschland werden aufgrund des EEGs zunehmend erneuerbare Energiequellen in das Netz eingebunden, die die Schwankungen der Energiequelle (z. B. Wind, solare Einstrahlung) ins Netz eintragen. Deswegen werden verschiedenste Konzepte (z. B. Prognosesystem, Lastmanagement) erforscht und erprobt, um die bisherige Qualität und Versorgungssicherheit zu erhalten.

Hier kann »Klimatisieren mit Wärme« einen wesentlichen Beitrag liefern, indem

- die Kältelast von der Stromlast entkoppelt wird,
- die Gesamtstoffspezifizität der brennstoffgebundenen Energieversorgung gesteigert wird oder
- eine Substitution von Brennstoffen stattfindet.

⁵ Genau zu dieser Zeit liegen in der Regel hohe solare Einstrahlungen und die Abwärme aus der KWK vor. Es ist aber zu prüfen, ob beim Einsatz von thermisch angetriebenen Kältemaschinen die Kühlung sinnvoll bewerkstelligt werden kann. Neben der Außentemperatur spielt dabei auch die Luftfeuchte eine entscheidende Rolle.

⁶ Ausfall oder Zusammenbruch der Elektroenergieversorgung
Ein weiterer Vorteil der thermisch angetriebenen Klimatisierung ist die leichtere Speicherbarkeit von Wärme, die sich auf elektrischer Seite schwieriger gestaltet und mit höheren Kosten verbunden ist.

10 Autorenangaben

10.1 Anschrift der Autoren

Dr.-Ing. Egbert Thümmler
AIC Ingenieurgesellschaft für Bauplanung
Chemnitz GmbH
Brückenstraße 8
09111 Chemnitz
e.thuemmler@aic-chemnitz.de

Dipl.-Ing. Ulf Uhlig
Stadtwerke Chemnitz AG
Postfach 41 14 68
09030 Chemnitz
Tel.: 0371/525-4740
Fax: 0371/525-4745
ulf.uhlig@swc.de

PD Dr.-Ing. habil. Thorsten Urbaneck
Technische Universität Chemnitz
Fakultät für Maschinenbau
Professur Technische Thermodynamik
09107 Chemnitz
Tel.: 0371/531-32463
Fax: 0371/531-832463
thorsten.urbaneck@mb.tu-chemnitz.de

Dr. Hans-Martin Henning
Dipl. Phys. Edo Wiemken
Dr.-Ing. Alexander Morgenstern
Fraunhofer-Institut für Solare Energiesysteme ISE
Heidenhofstrasse 2
79110 Freiburg

LESEPROBE